Please note, this is a STATIC archive of website www.w3resource.com from 19 Jul 2022, cach3.com does not collect or store any user information, there is no "phishing" involved.
w3resource

Python: Get the details of math module

Python Basic: Exercise-72 with Solution

Write a Python program to get the details of math module.

Sample Solution-1:

Python Code:

# Imports the math module
import math            
#Sets everything to a list of math module
math_ls = dir(math) # 
print(math_ls)

Sample Output:

['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'at
an2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'fact
orial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isn
an', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'sin', 'sinh',
 'sqrt', 'tan', 'tanh', 'trunc']  
 

Sample Solution-2:

Python Code:

import math
print("Details of math module:\n")
help(math)

Sample Output:

Details of math module:

Help on built-in module math:

NAME
    math

DESCRIPTION
    This module is always available.  It provides access to the
    mathematical functions defined by the C standard.

FUNCTIONS
    acos(...)
        acos(x)
        
        Return the arc cosine (measured in radians) of x.
    
    acosh(...)
        acosh(x)
        
        Return the inverse hyperbolic cosine of x.
    
    asin(...)
        asin(x)
        
        Return the arc sine (measured in radians) of x.
    
    asinh(...)
        asinh(x)
        
        Return the inverse hyperbolic sine of x.
    
    atan(...)
        atan(x)
        
        Return the arc tangent (measured in radians) of x.
    
    atan2(...)
        atan2(y, x)
        
        Return the arc tangent (measured in radians) of y/x.
        Unlike atan(y/x), the signs of both x and y are considered.
    
    atanh(...)
        atanh(x)
        
        Return the inverse hyperbolic tangent of x.
    
    ceil(...)
        ceil(x)
        
        Return the ceiling of x as an Integral.
        This is the smallest integer >= x.
    
    copysign(...)
        copysign(x, y)
        
        Return a float with the magnitude (absolute value) of x but the sign 
        of y. On platforms that support signed zeros, copysign(1.0, -0.0) 
        returns -1.0.
    
    cos(...)
        cos(x)
        
        Return the cosine of x (measured in radians).
    
    cosh(...)
        cosh(x)
        
        Return the hyperbolic cosine of x.
    
    degrees(...)
        degrees(x)
        
        Convert angle x from radians to degrees.
    
    erf(...)
        erf(x)
        
        Error function at x.
    
    erfc(...)
        erfc(x)
        
        Complementary error function at x.
    
    exp(...)
        exp(x)
        
        Return e raised to the power of x.
    
    expm1(...)
        expm1(x)
        
        Return exp(x)-1.
        This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.
    
    fabs(...)
        fabs(x)
        
        Return the absolute value of the float x.
    
    factorial(...)
        factorial(x) -> Integral
        
        Find x!. Raise a ValueError if x is negative or non-integral.
    
    floor(...)
        floor(x)
        
        Return the floor of x as an Integral.
        This is the largest integer <= x.
    
    fmod(...)
        fmod(x, y)
        
        Return fmod(x, y), according to platform C.  x % y may differ.
    
    frexp(...)
        frexp(x)
        
        Return the mantissa and exponent of x, as pair (m, e).
        m is a float and e is an int, such that x = m * 2.**e.
        If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.
    
    fsum(...)
        fsum(iterable)
        
        Return an accurate floating point sum of values in the iterable.
        Assumes IEEE-754 floating point arithmetic.
    
    gamma(...)
        gamma(x)
        
        Gamma function at x.
    
    gcd(...)
        gcd(x, y) -> int
        greatest common divisor of x and y
    
    hypot(...)
        hypot(x, y)
        
        Return the Euclidean distance, sqrt(x*x + y*y).
    
    isclose(...)
        isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool
        
        Determine whether two floating point numbers are close in value.
        
           rel_tol
               maximum difference for being considered "close", relative to the
               magnitude of the input values
            abs_tol
               maximum difference for being considered "close", regardless of the
               magnitude of the input values
        
        Return True if a is close in value to b, and False otherwise.
        
        For the values to be considered close, the difference between them
        must be smaller than at least one of the tolerances.
        
        -inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
        is, NaN is not close to anything, even itself.  inf and -inf are
        only close to themselves.
    
    isfinite(...)
        isfinite(x) -> bool
        
        Return True if x is neither an infinity nor a NaN, and False otherwise.
    
    isinf(...)
        isinf(x) -> bool
        
        Return True if x is a positive or negative infinity, and False otherwise.
    
    isnan(...)
        isnan(x) -> bool
        
        Return True if x is a NaN (not a number), and False otherwise.
    
    ldexp(...)
        ldexp(x, i)
        
        Return x * (2**i).
    
    lgamma(...)
        lgamma(x)
        
        Natural logarithm of absolute value of Gamma function at x.
    
    log(...)
        log(x[, base])
        
        Return the logarithm of x to the given base.
        If the base not specified, returns the natural logarithm (base e) of x.
    
    log10(...)
        log10(x)
        
        Return the base 10 logarithm of x.
    
    log1p(...)
        log1p(x)
        
        Return the natural logarithm of 1+x (base e).
        The result is computed in a way which is accurate for x near zero.
    
    log2(...)
        log2(x)
        
        Return the base 2 logarithm of x.
    
    modf(...)
        modf(x)
        
        Return the fractional and integer parts of x.  Both results carry the sign
        of x and are floats.
    
    pow(...)
        pow(x, y)
        
        Return x**y (x to the power of y).
    
    radians(...)
        radians(x)
        
        Convert angle x from degrees to radians.
    
    sin(...)
        sin(x)
        
        Return the sine of x (measured in radians).
    
    sinh(...)
        sinh(x)
        
        Return the hyperbolic sine of x.
    
    sqrt(...)
        sqrt(x)
        
        Return the square root of x.
    
    tan(...)
        tan(x)
        
        Return the tangent of x (measured in radians).
    
    tanh(...)
        tanh(x)
        
        Return the hyperbolic tangent of x.
    
    trunc(...)
        trunc(x:Real) -> Integral
        
        Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.

DATA
    e = 2.718281828459045
    inf = inf
    nan = nan
    pi = 3.141592653589793
    tau = 6.283185307179586

FILE
    (built-in)
 

Python Code Editor:

 

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Python program to get a directory listing, sorted by creation date.
Next: Write a Python program to calculate midpoints of a line.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Python: Tips of the Day

Find current directory and file's directory:

To get the full path to the directory a Python file is contained in, write this in that file:

import os 
dir_path = os.path.dirname(os.path.realpath(__file__))

(Note that the incantation above won't work if you've already used os.chdir() to change your current working directory, since the value of the __file__ constant is relative to the current working directory and is not changed by an os.chdir() call.)

To get the current working directory use

import os
cwd = os.getcwd()

Documentation references for the modules, constants and functions used above:

  • The os and os.path modules.
  • The __file__ constant
  • os.path.realpath(path) (returns "the canonical path of the specified filename, eliminating any symbolic links encountered in the path")
  • os.path.dirname(path) (returns "the directory name of pathname path")
  • os.getcwd() (returns "a string representing the current working directory")
  • os.chdir(path) ("change the current working directory to path")

Ref: https://bit.ly/3fy0R6m